Dothill Progression Mapping

Mathematics

Respect Happiness Responsibility Creatiuity HONESTY Enthusiasm Confidence Kindness Cooperation fairness

NB: Text in red font is taken from the RTP criteria

	EYFS	Year One	Year Two
Declarative I know that... (facts)	Number \& Place Value $\checkmark \quad$ I know that numbers to 10 can be partitioned. $\checkmark \quad$ I know that larger numbers are further along a numberline (for instance, when playing games with a numbered track)	Number \& Place Value \checkmark I know that 10 ones are equivalent to 1 ten. \checkmark I know that multiples of 10 are made up from a number of tens, e.g. 50 is 5 tens. $\checkmark \quad$ I know where numbers 1 to 9 are approximately located on an unlabelled 0-10 numberline	Number \& Place Value I know, recognise and understand the place value in two-digit numbers.
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Number \& Place Value \checkmark Compose numbers within 5 \checkmark Verbally count beyond 20, recognising the pattern of the counting system: \checkmark Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity; $\checkmark \quad$ Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.	Number \& Place Value \checkmark Count within 100, forwards and backwards, starting with any number. \checkmark Reason about the location of numbers to 20 within the linear number system, including comparing using < > and $=$ \checkmark Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number $\checkmark \quad$ Count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	Number \& Place Value Recognise the place value of each digit in a 2-digit number and compose and decompose two-digit numbers using standard and non-standard portioning. $\checkmark \quad$ Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10 . \checkmark Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward or backward \checkmark Compare and order numbers from 0 up to 100; use <, > and = signs \checkmark recognise the place value of each digit in a two-digit number (tens, ones)
Vocabulary	One more Count Answer One less Numbers up to Equals Place twenty Read Order Number line Write Number Pictorial	Forwards More than Digit Backwards Less than Calculate Numerals Fewer Odd Words Most Even Multiples Least Pattern Equal to Identify Numbers up to one Represent hundred	Ones Greater than > Zero Tens Less than < Compare Two- digit Nearest ten Determine Estimate Number facts Value Place Value Partition Solve Problems Count in steps
Declarative I know that... (facts)	Number Facts \checkmark Know that numbers within 10 can be partitioned \checkmark Know that items can be distributed fairly \checkmark Know and recognise when items are distributed unfairly \checkmark I know the number names $\checkmark \quad$ I know the number bonds to 10 $\checkmark \quad$ I know that numbers within 10 can be partitioned differently but will combine to make 10 .	Number Facts I know number bonds to 10 and number bonds for each number to 10 I know number bonds to 20	Number Facts \checkmark I know multiples of 2,5 and 10. $\checkmark \quad$ I know and can recall addition and subtraction facts within 10 and across 10. \checkmark I know that 10 can be thought of as a single unit of 1 ten.

Procedural	Number Facts	Number Facts	Number Facts
I know how to... (methods) In addition to Dothill Calculation Policy	\checkmark Can subitise within 5 \checkmark Can count beyond 20 \checkmark Have a deep understanding of number to 10, including the composition of each number \checkmark Automatically recall (without reference to rhymes, counting or other aids) \checkmark Number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts	Develop fluency in addition and subtraction facts within 10. \checkmark Count forwards and backwards in multiples of 2,5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers. \checkmark Given a number, identify one more and one less \checkmark Use the language of: equal to, more than, less than (fewer), most, least \checkmark Identify and represent numbers using objects and pictorial representations including the number line	Secure fluency in addition and subtraction facts within 10, through continued practice. \checkmark Identify, represent and estimate numbers using different representations, including the number line \checkmark Read and write numbers from 1 to 20 in numerals and words. \checkmark Read and write numbers to at least 100 in numerals and in words
Declarative I know that... (facts)	Addition \& Subtraction \checkmark Know and understand the value of number words, eg four relates to 4 objects	$\begin{array}{cl}\text { Addition \& Subtraction } \\ \checkmark & \text { Know and can use number bonds to } 10 . \\ \checkmark & \text { I know that part }+ \text { part }=\text { whole }\end{array}$	Addition \& Subtraction $\checkmark \quad$ I know that 10 ones are equivalent to 1 ten and 10 tens are equivalent to 1 hundred. \checkmark I know that addition is commutative, but subtraction is not. \checkmark I know addition and subtraction facts to 20 fluenntly. \checkmark I know that addition and subtraction are inverse operations. \checkmark I know that part+part=whole and \checkmark whole-part=part
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Addition \& Subtraction $\begin{array}{ll}\checkmark & \text { Subitise for up to } 5 \text { items } \\ \checkmark & \text { Show a given number using fingers }\end{array}$	Addition \& Subtraction Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers. Read, write and interpret equations containing addition $(+)$, subtraction (-) and equals (=) symbols, and relate additive expressions and equations to real-life contexts. $\checkmark \quad$ Represent and use number bonds and related subtraction facts within 20 $\checkmark \quad$ Add and subtract one-digit and two-digit numbers to 20, including zero \checkmark Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals ($=$) signs $\checkmark \quad$ (appears also in Written Methods) \checkmark Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs $\checkmark \quad$ (appears also in Mental Calculation) $\checkmark \quad$ Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	Addition \& Subtraction Add and subtract across 10. Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?". Add and subtract within 100 by applying related onedigit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number. Add and subtract within 100 by applying related onedigit addition and subtraction facts: add and subtract any 2 two-digit numbers. Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods

Vocabulary	Add Subtract Addition Subtraction Adding Subtracting	Number line Single digit Count on Count back Answer Doubling	Halving Sharing Numbers to twenty Check Number	One step problem Concrete object Pictorial representation Missing number Problem	Read Write Interpret Equals = Signs One-digit	Two-digit Ones Mental Mentally	Columnar addition Columnar Subtraction Tens Order Inverse	Relationship Calculation Solve problems Missing number problems Quantities Measures	Formal Written method Mental method Operation Apply Whole number
Declarative I know that... (facts)	Multiplication \& Division			Multiplication \& Division \checkmark I know doubles and halves of numbers to 10 \checkmark I know that a multiple of 10 is made up from a number of tens			Multiplication \& Division $\checkmark \quad$ I know that multiplication is the same as repeated addition. $\checkmark \quad$ I know doubles and halves of numbers to 20		
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Multiplication \& Division			Multiplication \& Division $\checkmark \quad$ Count in multiples of twos, fives and tens $\checkmark \quad$ Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher			Multiplication \& Division Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables. Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotative division). Count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals ($=$) signs Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts		
Vocabulary	sharing doubling halving number pattern			Multiples Twos Fives Tens Number Multiply Divide	Multiplication Division One step problem Answer Concrete object	Pictorial representation Arrays Count Equals Write	Multiplication fact Division facts Multiplication tables Odd numbers Even numbers	Share Equally Repeated division Calculate	
Declarative I know that... (facts)	Fractions			$\begin{array}{cl}\checkmark & \text { I know that a half is one of two equal parts. } \\ \checkmark & \text { I know that a quarter is one of } 4 \text { equal parts. }\end{array}$			ractions I know and can name fractions of shapes, set of objects or quantity.		

Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Fractions	Fractions Recognise, find and name a half as one of two equal parts of an object, shape or quantity Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	Fractions Recognise, find, name and write fractions ${ }^{1} / 3_{3},{ }^{1} l_{4} 4_{4}{ }^{\prime} /_{4}$ and ${ }^{3} /$ of a length, shape, set of objects or quantity Write simple fractions e.g. ${ }^{1 /}$ of $6=3$ and recognise the equivalence of ${ }^{2} /$ and $^{1} /{ }_{2}$.
Vocabulary		Fraction Shape Half Quantity Equal parts Quarter One whole Object	Simple fractions Equivalent equivalence Count
Declarative I know that... (facts)	Measurement \checkmark I know that objects can be longer / shorter, heavier / lighter, holds more than. \checkmark I know the vocabulary to use to compare measures.	Measurement $\checkmark \quad$ I know the names of the days of the week and months. \checkmark I know that the minute hand is the long hand and the hour hand is the short hand of a clock. $\checkmark \quad$ I know the value of different denominations of coins and notes \checkmark I know the vocabulary required when comparing length, mass, capacity and time. $\checkmark \quad$ I know the equipment needed to measure the following: \checkmark lengths and heights \checkmark mass/weight \checkmark capacity and volume $\checkmark \quad$ time (hours, minutes, seconds)	Measurement $\checkmark \quad$ I know the number of minutes in an hour and the number of hours in a day. \checkmark I know the value of different denominations of coins and notes and can use this to combine amounts I know the symbols for money - $£$ and p
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Measurement \checkmark Compare amounts of continuous quantities (longer / shorter, heavier / lighter).	Measurement $\checkmark \quad$ Compare, describe and solve practical problems for: lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] mass/weight [e.g. heavy/light, heavier than, lighter than] capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] $\checkmark \quad$ time [e.g. quicker, slower, earlier, later] $\checkmark \quad$ Sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] \checkmark Measure and begin to record the following: $\checkmark \quad$ lengths and heights \checkmark mass/weight $\checkmark \quad$ capacity and volume \checkmark time (hours, minutes, seconds) \checkmark Recognise and know the value of different denominations of coins and notes $\checkmark \quad$ Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times. Recognise and use language relating to dates, including days of the week, weeks, months and years	Measurement $\checkmark \quad$ Compare and order lengths, mass, volume/capacity and record the results using >, < and = $\checkmark \quad$ Compare and sequence intervals of time $\checkmark \quad$ Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels Recognise and use symbols for pounds ($£$) and pence (p): combine amounts to make a particular value Find different combinations of coins that equal the same amounts of money Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.

Vocabulary	Measure Measurement Size Weight Capacity	Compare Solve Problems Object Time	Length Height Long Short Longer Shorter Tall Double Half Mass Heavy Light Heavier than Lighter than Volume Full Empty	More than Less than Half Half full Quarter Quicker Slower Earlier Later Sequence events Chronological order Before After Next First Today Yesterday Tomorrow	Morning Afternoon Evening Record Hours Minutes Hour Half past O clock Hands Clock face Seconds Coins Notes Dates Days Weeks Months	Greater than > Less than < Equals = Intervals Standard units Estimate Direction Temperature Unit Scales Rulers Thermometers Measuring vessels Metres past	Centimetres Kilograms Grams Degrees Celsius Litres Millilitres Symbols Money Pounds (£) Pence (p) Different combinations Change Five past Ten past Quarter	Twenty past Twenty-five past Half past Twenty-five to Twenty to Quarter to Ten to Five to
Declarative I know that... (facts)	Statistics		Statistics			Statistics$\begin{aligned} & \checkmark \text { I know that information can be displayed visually. } \\ & \checkmark \quad \text { I know what categorical data is. } \end{aligned}$		
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Statistics		Statistics			Statistics \checkmark Interpret and construct simple pictograms, tally charts, block diagrams and simple tables $\checkmark \quad$ Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity $\checkmark \quad$ Ask and answer questions about totalling and comparing categorical data		
Vocabulary						Interpret Construct Pictogram Tally chart Block diagrams Horizontal Vertical x-axis \& y-axis	key title chart title Simple tables Ask Answer Questions Counting	Category Sort Quantity Total Compare Data Objects
Declarative I know that... (facts)	Algebra		I know number bonds to 10 and number bonds for each number to 10 I know number bonds to 20			Algebra		

Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Algebra	Algebra Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction) $\checkmark \quad$ Represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction) \checkmark Sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening (copied from Measurement)	Algebra Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction) \checkmark Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction) $\checkmark \quad$ Compare and sequence intervals of time (copied from Measurement) $\checkmark \quad$ Order and arrange combinations of mathematical objects in patterns (copied from Geometry: position and direction)
Vocabulary		Solve One -step problem Missing number Check Calculate problem Sequence Chronological	Inverse Relationship Compare Order Arrange Pattern
Declarative I know that... (facts)	Geometry \checkmark I know the names of some 2D shapes \checkmark I know positional vocabulary, such as up, down, across, behind etc.	Geometry \checkmark I know and recognise common 2D and 3D shapes presented in different orientations $\checkmark \quad I$ know that 2 D shapes are 2 dimensional and 3 D shapes have three. $\checkmark \quad$ I know the properties of common 2D and 3D shapes.	Geometry I know and recognise standard and non-standard examples of 2D shapes presented in different orientations. I know the properties of an increasing number of 2 D and 3 D shapes \checkmark I know what similar shapes are and can identify them. \checkmark I know vocabulary connected to shapes - edges, faces, vertices.
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Geometry Can see, explore and discuss models of common 2D and 3D shapes with varied dimensions and presented in different orientations (for example, triangles not always presented on their base). \checkmark Select, rotate and manipulate shapes for a particular purpose, for example: $\checkmark \quad$ rotating a cylinder so it can be used to build a tower $\checkmark \quad$ rotating a puzzle piece to fit in its place \checkmark Develop spatial vocabulary	Geometry Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another. \checkmark Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations. \checkmark Recognise and name common 2-D and 3-D shapes, including: $\checkmark \quad$ 2-D shapes [e.g. rectangles (including squares), circles and triangles] \checkmark 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres]. \checkmark Describe position, direction and movement, including half, quarter and three-quarter turns.	Geometry Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by reasoning about similarities and differences in properties Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] Compare and sort common 2-D and 3-D shapes and everyday objects Use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise) Order and arrange combinations of mathematical objects in patterns and sequences

Vocabulary	Position Distance Direction Move Movement Patterns Shape Square Rectangle Circle Triangle Sides Straight side Curved side	Half furn Two-dimensional Quarter turn Three-dimensional Three-quarter Cuboid turn Cube Left Pyramid Right Cone Up Cylinder Down Sphere 2-D Shapes 3-D Shapes	 Rotation Pentagon Octahedron Right angle Hexagon Dodecahedron Clockwise Heptagon Tertahedron Anti-clockwise Cttagon Rectangular Order Nonagon pyramid Arrange Deceagon Pentagonal Sequence Kite pyramid Properties Rhombus Hexagonal Compare Polygon pyramid Common Square-based Octagonal pyramid Line symmetry pyramid Vertical line Triangular pyramid Edges Triangular prism Faces Rectangular prism Vertices Pentagonal prism Hexagonal lrism Octagonal prism
Conditional I know when...\& I know why... (strategies)	Addition \& Subtraction I know when to find the total number of items in two groups by counting all of them \checkmark I know why I cam finding the total amount \checkmark I Know when to use the vocabulary involved in adding and subtracting $\checkmark \quad$ I know why I have selected the vocabulary I am using	Addition \& Subtraction I know when to solve one-step problems $\checkmark \quad$ I know why there is one part to the problem $\checkmark \quad$ I know when to use addition and subtraction to solve a problem \checkmark I know why I am using addition or subtraction $\checkmark \quad$ Multiplication \& Division \checkmark I know when to solve one-step problems \checkmark I know why there is one part to the problem $\checkmark \quad$ I know when to use multiplication and division to solve a problem $\checkmark \quad$ I know why I am using multiplication and division \checkmark I know when to use concrete objects, pictorial representations and arrays to help me solve a problem $\checkmark \quad$ I know why I am using concrete objects, pictorial representations and arrays to help me solve a problem \checkmark Statistics \checkmark I know why I am interpreting pictograms, tally charts, block diagrams and tables to solve a problem	Addition \& Subtraction I know when to use place value and number facts to solve problems \checkmark I know when to use addition and subtraction to solve a problem \checkmark I know why I have selected addition or subtraction to solve my problem \checkmark I know when to use concrete objects and / or pictorial representations to solve a problem \checkmark I know why I have chosen to use concrete objects or pictorial representations to solve a problem \checkmark I know when to use a mental or written calculation $\checkmark \quad$ I know why I have selected to use a mental or written calculation Multiplication \& Division I know when to use multiplication and division to solve a problem \checkmark I know why I have selected multiplication or division to solve my problem \checkmark I know when to use apparatus, arrays or repeated addition to solve a problem involving multiplication or division \checkmark I know why I have chosen to apparatus, arrays or repeated addition to solve a problem involving multiplication or division \checkmark I know when to use a mental calculation I know why I have selected to use a mental calculation Statistics I know when to interpret pictograms, tally charts, block diagrams and tables to solve a problem \checkmark I know why I am interpreting pictograms, tally charts, block diagrams and tables to solve a problem \checkmark I know when to construct pictograms, tally charts, block diagrams and tables to solve a problem \checkmark I know why I am constructing pictograms, tally charts, block diagrams and tables to solve a problem

