Dothill Progression Mapping

Mathematics

Respect Happiness Responsibility

NB: Text in red font is taken from the RTP criteria

	Year Three	Year Four
Declarative I know that... (facts)	Number \& Place Value $\checkmark \quad$ Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10 ; apply this to identify and work out how many 10 s there are in other three-digit multiples of 10 . $\checkmark \quad$ I know the previous and next multiple of 10 and 100 for a 3-digit number. \checkmark I know that $100=2 \times 50=4 \times 25=5 \times 20=10 \times 10$ and the related division facts. I know that this fact can be used to read numberline / scales marked in multiples of 100 with 2, 4, 5 and 10 equal parts.	Number \& Place Value Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 . $\checkmark \quad$ I know and can identify the place value of each digit in a four-digit number, and can compose and decompose four-digit numbers using standard and non-standard partitioning. \checkmark I know the previous and next multiples of 1,000 and 100 of any four-digit number. \checkmark I know what 1,000 divided into 2, 4, 5 and 10 equal parts is, and can read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts.
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Number \& Place Value Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning. \checkmark Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10. \checkmark Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts. \checkmark Count from 0 in multiples of 4,8,50 and 100; \checkmark Find 10 or 100 more or less than a given number \checkmark Compare and order numbers up to 1000 \checkmark Identify, represent and estimate numbers using different representations \checkmark Read and write numbers up to 1000 in numerals and in words \checkmark Recognise the place value of each digit in a three-digit number (hundreds, tens, ones) \checkmark solve number problems and practical problems involving these ideas.	Number \& Place Value Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning. Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each. \checkmark Divide 1,000 into 2, 4,5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts. \checkmark Count backwards through zero to include negative numbers \checkmark Count in multiples of 6,7,9,25 and 1000 \checkmark Find 1000 more or less than a given number \checkmark Order and compare numbers beyond 1000 \checkmark Identify, represent and estimate numbers using different representations \checkmark Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value. \checkmark Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) \checkmark Round any number to the nearest 10,100 or 1000 \checkmark Solve number and practical problems that involve all of the above and with increasingly large positive numbers
Vocabulary	Hundreds one hundred less Three-digit Roman numeral ten more Numbers up to one thousand one hundred more ten less	Thousands Decimal Nearest thousand Four- digit Decimal place One place Negative number Rounding Whole number One thousand more Place holder Integer One thousand less Nearest ten Tenths Nearest hundred

	Number Facts	Number Facts
I know that... (facts)	Recall multiplication facts, and corresponding division facts, in the 10,5,2,4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number. Secure fluency in addition and subtraction facts that bridge 10, through continued practice. \checkmark I know additive and multiplicative fact (scaling facts by 10), eg $3 \times 4=12$ so $30 \times 4=120$, $8+6=14$ so $80-+60=140$	$\checkmark \quad$ Recall multiplication and division facts up to 12×12, and recognise products in multiplication tables as multiples of the corresponding number. $\checkmark \quad$ I know that some divisions will result in a quotient and a remainder. $\checkmark \quad$ I know and can apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10 or 100), eg $3 \times 4=12$, so $30 \times 4=120$ and $300 \times 4=1200$ and $8+6=14$, so $80+60=140$ and $800+600=1400$.
Procedural	Number Facts	Number Facts
I know how to... (methods)	$\checkmark \quad$ Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10).	\checkmark Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders, and interpret remainders appropriately according to the context. \checkmark Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100)
In addition to Dothill Calculation Policy		
Vocabulary		
Declarative	Addition \& Subtraction	Addition \& Subtraction
I know that... (facts)	$\checkmark \quad$ Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction	\checkmark I know that I can use the inverse operation to check my answers.
	Addition \& Subtraction	Addition \& Subtraction
	Calculate complements to 100.	add and subtract numbers with up to 4 digits using the formal written methods of columnar
,	\checkmark Add and subtract up to three-digit numbers using columnar methods.	addition and subtraction where appropriate
	\checkmark Add and subtract numbers mentally, including:	\checkmark Estimate and use inverse operations to check answers to a calculation
(methods)	$\checkmark \quad a$ three-digit number and ones \checkmark a three-digit number and tens	$\checkmark \quad$ Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
	$\checkmark \quad$ a three-digit number and hundreds	
In addition to	\checkmark Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	
Dothill Calculation Policy	\checkmark Estimate the answer to a calculation and use inverse operations to check answers \checkmark Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	
Vocabulary	Three-digit number Hundreds Estimate Number facts	Two step problems Context Four-digit

Declarative
I know that...
(facts)

Procedural

I know how to...

(methods)
In addition to
Dothill
Calculation Policy

Multiplication \& Division

Apply known multiplication and division facts to solve contextual problems with different structures, including quotitive and partitive division.
\checkmark Count from 0 in multiples of 4,8,50 and 100
$\checkmark \quad$ Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
$\checkmark \quad$ Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)
$\checkmark \quad$ Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)
\checkmark Estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)
\checkmark Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to mobjects

Vocabulary

Declarative
I know that...
(facts)

Multiplication \& Division
I know and can use place value knowledge to multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to scaling a number by 10 or 100.
\checkmark I know and can recall multiplication and division facts up to 12×12 and recognise products in multiplication tables as multiples of the corresponding number.
I know multiples of 10,100 and 1000 .
\checkmark I know and can apply place value knowledge to know additive and multiplicative number facts.
I know the multiplication and division are inverse operations and can use this to manipulate multiplication and division equations.
I know that multiplication is distributive, so $3 \times(2+4)=3 \times 2+3 \times 4$, but division is not.
\checkmark I know that multiplication is associative so $(3 \times 4) \times 5=3 \times(4 \times 5)$
\checkmark I know that multiplication is commutative, but division is not.

Multiplication \& Division

Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients):
understand this as equivalent to making a number 10 or 100 times the size.
\checkmark Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication
\checkmark Understand and apply the distributive property of multiplication
$\checkmark \quad$ Count in multiples of $6,7,9,25$ and 1000
\checkmark Recall multiplication and division facts for multiplication tables up to 12×12
$\checkmark \quad$ Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
$\checkmark \quad$ Recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)
\checkmark Multiply two-digit and three-digit numbers by a one-digit number using formal written layout \checkmark Recognise and use factor pairs and commutativity in mental calculations (repeated)
$\checkmark \quad$ Estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)
\checkmark Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects
$\checkmark \quad$ problems such as n objects are connected to m objects
Derived facts
Factors

Factor pairs

Fractions

\checkmark I know that the numerator is the number of unit fractions in a non-unit fraction (for example, know that there are 3 one-fifths in three-fifths).
I know that there a n parts in the whole, when the denominator is n
\checkmark I know that fractions can be equivalent eg $\frac{1}{2}=3 / 6$

Vocabulary	Angle Turn Right angles Quarter of a turn Half-turn Three quarters of a turn	Complete turn Horizontal lines Vertical lines Perpendicular lines Parallel lines	Co-ordinates Quadrant Grid Translate Translation Axis X-axis y-axis	Spaces Unit Plot Point Polygon Lines of symmetry Symmetric figure	Classify Geometric shapes Quadrilaterals Acute angle Obtuse angle
Declarative I know that... (facts)	Ratio \& Proportion		Ratio \& Proportion		
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Ratio \& Proportion		Ratio \& Proportion		
Vocabulary					
Declarative I know that... (facts)	Measurement \checkmark I know the appropriate units of measurements lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity ($1 / \mathrm{ml}$) \checkmark I know that perimeter is the total length around the outside of a 2 D shape \checkmark I know that perimeter of a rectangle is $2 \times$ (width + length) \checkmark I know that 100 p is equal to $£ 1$ $\checkmark \quad$ I know the number of seconds in a minute and the number of days in each month, year and leap year $\checkmark \quad$ I know vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time) $\checkmark \quad$ I know Roman numerals from I to XII and know why have these.		\checkmark I know that the area is the space that a $2 D$ shape takes up. \checkmark I know the conversion rates for units of measurement (g in Kg, cm in m, m in Km , seconds in a minute etc.		

