Dothill Progression Mapping

Mathematics

Respect Happiness Responsibility Creatiuity HONESTY Enthusiasm Confidence Kindness Cooperation fairness

NB: Text in red font is taken from the RTP criteria

	Year Five	Year Six
Declarative I know that... (facts)	Number \& Place Value I know the relationship between powers of 10 from 1 hundredth to 1,000 in terms of grouping and exchange (for example, 1 is equal to 10 tenths) and in terms of scaling (for example, 1 is ten times the size of 1 tenth). $\checkmark \quad$ I know and can recognise the place value of each digit in numbers with units from thousands to hundredths and compose and decompose these numbers using standard and non-standard partitioning. $\checkmark \quad$ I know and understand the linear number system, and can use this to reason about the location of number between 0.01 and 9,999 . \checkmark I know what 1000 divided into 100 and 1 into 2, 4, 5 and 10 equal parts is, and read scales/number lines with $2,4,5$ and 10 equal parts.	Number \& Place Value I know and understand the relationship between powers of 10 from 1 hundredth to 10 million, I know the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non-standard partitioning. \checkmark I know that rounding can be used to estimate calculations. \checkmark I know that negative numbers are less than zero and can use negative numbers in context.
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Number \& Place Value Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1 . Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 . Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and nonstandard partitioning. Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each. \checkmark Divide 1 into 2, 4,5 and 10 equal parts, and read scales/number lines marked in units of 1 with $2,4,5$ and 10 equal parts. \checkmark Convert between units of measure, including using common decimals and fractions. \checkmark Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero \checkmark Count forwards or backwards in steps of powers of 10 for any given number up to 1000 000 \checkmark Read, write, order and compare numbers to at least 1000000 and determine the value of each digit \checkmark (appears also in Reading and Writing Numbers) \checkmark Read, write, order and compare numbers to at least 1000000 and determine the value of each digit \checkmark (appears also in Comparing Numbers) \checkmark Read Roman numerals to 1000 (M) and recognise years written in Roman numerals. \checkmark Read, write, order and compare numbers to at least 1000000 and determine the value of each digit $\checkmark \quad$ (appears also in Reading and Writing Numbers) \checkmark Round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000 \checkmark Solve number problems and practical problems that involve all of the above	Number \& Place Value Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number $10,100,1,000,1$ tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10,100 and 1,000). \checkmark Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and nonstandard partitioning. \checkmark Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts. \checkmark Divide powers of 10 , from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts. \checkmark Use negative numbers in context, and calculate intervals across zero \checkmark Read, write, order and compare numbers up to $\checkmark \quad 10000000$ and determine the value of each digit (appears also in Reading and Writing Numbers) $\checkmark \quad$ Round any whole number to a required degree of accuracy \checkmark Solve number and practical problems that involve all of the above

Vocabulary	Ten thousands Decimal equivalents Hundred thousands Two decimal places Millions Thousandths Context Numbers up to one million Steps of powers	Intervals across zero Three decimal places Hundredths Thousandths Ten thousandths Numbers up to ten million
Declarative I know that... (facts)	Number Facts \checkmark I know and can recall multiplication and division facts up to 12×12 $\checkmark \quad$ I know and can apply place value knowledge to know additive and multiplicative facts.	Number Facts
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Number Facts $\checkmark \quad$ Secure fluency in multiplication table facts, and corresponding division facts, through continued practice. $\checkmark \quad$ Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth).	Number Facts
Vocabulary		
Declarative I know that... (facts)	Addition \& Subtraction I know that addition and subtraction are inverse operations and can use this fact to manipulate additive equations.	Addition \& Subtraction I know that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number). $\checkmark \quad$ I know the order of operations and use this to carry out calculations involving the four operations \checkmark I know to use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. \checkmark I know vocabulary commonly associated with the four operations and use this to identify the operations required when solving contextualised problems.
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Addition \& Subtraction $\checkmark \quad$ Add and subtract numbers mentally with increasingly large numbers $\checkmark \quad$ Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) $\checkmark \quad$ Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy $\checkmark \quad$ Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	Addition \& Subtraction Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number). Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding. Solve problems involving ratio relationships. $\checkmark \quad$ Solve problems with 2 unknowns. $\checkmark \quad$ Perform mental calculations, including with mixed operations and large numbers $\checkmark \quad$ Use their knowledge of the order of operations to carry out calculations involving the four operations \checkmark Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. $\checkmark \quad$ Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division

Vocabulary
Declarative

I know that...

(facts)

Procedural
I know how to.
(methods)

In addition to
Dothill
Calculation Policy

Increasingly large numbers
More than 4 digits
Rounding
Determine
Context
Multi-step problems

Multiplication \& Division

\checkmark I know that multiplication and division are inverse operations and can use this to manipulate multiplicative equations.
\checkmark I know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
I know that square numbers are the product of a number multiplied by itself, eg $25=5 \times$ 5
I know that cubed numbers are the product of a number multiplied by itself multiplied by itself, eg $8=2 \times 2 \times 2$
\checkmark I know the prime numbers to 30

Multiplication \& Division

Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size.
$\checkmark \quad$ Find factors and multiples of positive whole numbers, including common factors and
common multiples, and express a given number as a product of 2 or 3 factors.
\checkmark Multiply any whole number with up to 4 digits by any one-digit number using a formal written method.
\checkmark Divide a number with up to 4 digits by a one-digit number using a formal written method and interpret remainders appropriately for the context
\checkmark Count forwards or backwards in steps of powers of 10 for any given number up to
$\checkmark 1000000$
Multiply and divide numbers mentally drawing upon known facts
\checkmark Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
\checkmark Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
\checkmark Divide numbers up to 4 digits by a one-digit number using the formal written method of Divide numbers up to 4 digits by a one-digit number using the formal w
short division and interpret remainders appropriately for the context
$\checkmark \quad$ Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
\checkmark Establish whether a number up to 100 is prime and recall prime numbers up to 19
$\checkmark \quad$ Recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)
\checkmark Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
\checkmark Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
\checkmark Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

Estimation

Multiplication \& Division

I know that 2 numbers can be related additively or multiplicatively
I know that a given additive or multiplicative calculation can be used to derive or complete a related calcula
\checkmark I know that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).
\checkmark I know that mental calculations can be a more efficient method than more formal methods.
I know that fractions have decimal equivalents.
\checkmark I know what common factors, common multiples and prime numbers are
\checkmark I know the prime numbers to 100.
I know that factors can be simplified by using common factors

Multiplication \& Division

Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.
\checkmark Solve problems involving ratio relationships.
Solve problems with 2 unknowns.
\checkmark Perform mental calculations, including with mixed operations and large numbers
$\checkmark \quad$ Associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3 / 8}$)
\checkmark Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
$\checkmark \quad$ Divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
$\checkmark \quad$ Use written division methods in cases where the answer has up to two decimal places (copied from Fractions (including decimals))
Identify common factors, common multiples and prime numbers
\checkmark Use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
\checkmark Calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units such as mm^{3} and km^{3} (copied from Measures)
\checkmark Use their knowledge of the order of operations to carry out calculations involving the four operations
\checkmark Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
Solve problems involving addition, subtraction, multiplication and division
$\checkmark \quad$ Solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

Vocabulary	Decimals Common Squares Four-digit Multiples Cubes Long multiplication Prime numbers Short division Prime factors Remainders Composite numbers Context Square number Common Cube number factors Notation	Scale factor Long division Whole number remainders Fractions Rounding Mixed operations
Declarative I know that... (facts)	Fractions \checkmark I know locations of fractions and mixed numbers in the linear number system. \checkmark I know that fractions can be equivalent and can use multiplication and division facts to find these.	Fractions \checkmark I know that common factors can be used to simplify fractions. \checkmark I know that fractions can have equivalent fractions and can use multiplication and division facts to find these. \checkmark I know place values to 10 million \checkmark I know that fractions can be associated with division and can use this to calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3}{ }_{8}$) I know and can recall equivalences between simple fractions, decimals and percentages, including in different contexts.
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Fractions Find non-unit fractions of quantities. Find equivalent fractions and understand that they have the same value and the same position in the linear number system. Recall decimal fraction equivalents for $\frac{1}{2}, \frac{1}{4}, 1 / 5$ and $1 / 10$ and for multiples of these proper fractions. Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents \checkmark (appears also in Equivalence) $\checkmark \quad$ Compare and order fractions whose denominators are all multiples of the same number \checkmark Read, write, order and compare numbers with up to three decimal places $\checkmark \quad$ Round decimals with two decimal places to the nearest whole number and to one decimal place Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths Read and write decimal numbers as fractions (e.g. $0.71={ }^{71} /{ }_{100}$) Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents Recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction $\checkmark \quad$ Add and subtract fractions with the same denominator and multiples of the same number \checkmark Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number (e.g. ${ }^{2} /{ }_{5}+4 / 5 /=6 / 51_{5}^{1} /$) Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams Solve problems involving numbers up to three decimal places Solve problems which require knowing percentage and decimal equivalents of ${ }^{1} /{ }_{2},{ }_{1} /{ }_{4},{ }^{1} /{ }_{5}{ }^{\prime}$ ${ }^{2} /{ }_{5}{ }^{\prime} /{ }_{5}$ and those with a denominator of a multiple of 10 or 25.	Fractions Recognise when fractions can be simplified, and use common factors to simplify fractions. Express fractions in a common denomination and use this to compare fractions that are similar in value. $\checkmark \quad$ Compare fractions with different denominators, including fractions greater than 1, using reasoning, and choose between reasoning and common denomination as a comparison strategy. $\checkmark \quad$ Compare and order fractions, including fractions >1 $\checkmark \quad$ Identify the value of each digit in numbers given to three decimal places $\checkmark \quad$ Solve problems which require answers to be rounded to specified degrees of accuracy \checkmark Use common factors to simplify fractions; use common multiples to express fractions in the same denomination $\checkmark \quad$ Associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3}{ }_{8}$) $\checkmark \quad$ Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. \checkmark Add and subtract fractions with different denominators and mixed numbers, using the \checkmark concept of equivalent fractions $\checkmark \quad$ Multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. ${ }^{1} /{ }_{4} \times^{1} /{ }_{2}$ $={ }^{1} /{ }_{8}$) \checkmark Multiply one-digit numbers with up to two decimal places by whole numbers \checkmark Divide proper fractions by whole numbers (e.g. $/_{3}^{1} \div 2={ }^{1} /$) $\checkmark \quad$ Multiply one-digit numbers with up to two decimal places by whole numbers $\checkmark \quad$ Multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places $\checkmark \quad$ Identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places $\checkmark \quad$ Associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$) $\checkmark \quad$ Use written division methods in cases where the answer has up to two decimal places

Vocabulary	Thousandths Multiples Three decimal places Percent Number of parts per hundred Percentages	Decimal Multiply fraction Percentage and decimal Mixed numbers equivalents Improper fraction Proper fraction Convert Mathematical statements	Common factors Common multiples Decimal fraction equivalents Simplest form
Declarative I know that... (facts)	Ratio \& Proportion		Ratio \& Proportion \checkmark I know that ratio is related to fractions \checkmark I know that scale factors enlarge a shape by multiplying the scale factor and each side of the shape. \checkmark I know that percentage is 'per 100'.
Procedural I know how to... (methods) In addition to Dothill Calculation Policy	Ratio \& Proportion		Ratio \& Proportion $\checkmark \quad$ Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts \checkmark Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison $\checkmark \quad$ Solve problems involving similar shapes where the scale factor is known or can be found $\checkmark \quad$ Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
Vocabulary			Ratio Multiplication Percentage Proportion Division Comparison Unequal sharing Size Multiply Grouping Quantity Divide Fractions Missing value Solve Multiples Integer Problem
Declarative I know that... (facts)	Measurement	rates between metric units. rates from metric to imperial and vice versa.	Measurement $\checkmark \quad$ I know that 8 km is approximately equal to 5 miles

Conditional

I know when... \& I know why... (strategies)

Addition \& Subtraction
I know when a problem has multi parts that I am required to work out.
$\checkmark \quad$ I know why a problem is a multi-step problem and can explain this
\checkmark I know when to use the most efficient written or mental calculation to solve a problem
$\checkmark \quad$ I know why I have selected a specific written or mental calculation to solve a problem and can explain
\checkmark I know when to use the most efficient method for solving addition and subtraction problems
\checkmark I know why I have selected specific methods to solve my problem

Multiplication \& Division

I know when to use knowledge of factors, multiplies, squares and cubes to solve a multiplication and division question
$\checkmark \quad$ I know why I have selected to use knowledge of factors, multiplies, squares and cubes to solve a multiplication and division question
\checkmark I know when to use a mental calculation or written method to solve more challenging problems
$\checkmark \quad$ I know why I have chosen to a mental calculation or written method to solve more challenging problems

Fractions

I know when to use my fraction knowledge to solve a more complex problem
\checkmark I know why I have selected to use fractions to solve a problem.
\checkmark I know when to use my knowledge of percentages to solve a problem up to three decimal places
$\checkmark \quad$ I know why I am using my knowledge of percentages to solve a problem up to three decimal places

Statistics

$\checkmark \quad$ I know when to complete, read or interpret tables to solve a problem
$\checkmark \quad$ I know why I am completing, reading or interpreting data in a table to solve a problem

Addition \& Subtraction
I know when a problem, in a range of contexts, has multi parts that I am required to work out \checkmark I know when a problem, in a range of contexts, has multi parts that I am required to work out
\checkmark I know when to use the most efficient written or mental calculation to solve a problem in a range of contexts
\checkmark I know why I have selected a specific written or mental calculation to solve a problem and can explain and justify my reasoning
I know when to use the most efficient method for solving addition and subtraction problems
I know why I have selected specific methods to solve my problem and can explain with confidence

Multiplication \& Division

I know when a problem, in a range of contexts, has multi parts that I am required to work out multiplication or division
\checkmark I know why a problem is a multi-step problem and can explain this with confidence and justify
\checkmark I know when to use the most efficient written or mental calculation to solve a problem in a range of contexts
$\checkmark \quad$ I know why I have selected a specific written or mental calculation to solve a problem and can explain and justify my reasoning
\checkmark I know when to use the most efficient method for solving multiplication and division problems I know why I have selected specific methods to solve my problem and can explain with confidence

Fraction

I know when to use my fraction knowledge to solve a more complex problem in a range of context
I know why I have selected to use fractions to solve a problem.
\checkmark I know when an answer requires to be rounded to specified degrees of accuracy
$\checkmark \quad$ I know why I am rounding to specified degrees of accuracy to give an answer

Statistics

I know when to construct a pie chart or line graph to solve a problem
$\checkmark \quad$ I know whey I have selected to use a pie chart or a line graph to solve a problem
\checkmark I know when to interpret t a pie chart or line graph to solve a problem
\checkmark I know why I have selected to interpret pie chart or a line graph to solve a problem

