Multiplication KS2

KS1	Pupils should memorise and reason with numbers in 2,5 and 10 times tables. They should see ways to represent odd and even numbers and know how they are represented in tables. This will help them to understand the pattern in numbers. Pupils should begin to understand multiplication as scaling in terms of double and half (e.g. that tower of cubes is double the height of the other tower). Commutative law shown on array. Repeated addition can be shown mentally on a number line. Inverse relationship between multiplication and division. Use an array to explore how numbers can be organised into groups.							
Year							,	
Developing Conceptual/ Procedural Understandi						Building tables For example, build tables using counting stickforwards and backwards and with missing jumps Using known facts If $2 \times 3=6$ then $200 \times 3=600$ and $600 \div 3=200$ Distributivity $3 \times(2+4)=3 \times 2+3 \times 4$ So the ' 3 ' can be 'distributed' across the ' $2+4$ ' into 3 times 2 and 3 times 4 \qquad $=$ leading to $13 \times 4=10 \times 4+3 \times 4=52$ \square \square	Place value materials to represent calculations Grid method (if needed for conceptual understanding)346×9x 300 40 6 9 Short multiplication Expanded	Representing problems Multiply a number by itself and then make one factor one more and the other one less. What do you notice? Does this always happen? $\begin{array}{lr} \text { Eg } 4 \times 4=16 & 6 \times 6=36 \\ 5 \times 3=15 & 7 \times 5=35 \end{array}$ Try out more examples to prove your thinking. Place $<,>$, or $=$ in these number sentences to make them correct: $\begin{aligned} & 50 \times 4 \square 4 \times 50 \\ & 4 \times 50-40 \times 5 \\ & 200 \times 5 \square 3 \times 300 \end{aligned}$
Known facts	Recall and use x and \div facts for the 3,4 and $8 x$ tables					Recall x and \div facts for x	les up to 12×12.	
Essential knowledge	$\frac{\text { Review } 2 \mathrm{x}, 5 \mathrm{x} \text { and } 10 \mathrm{x}}{4 \mathrm{x} \text { table }}$		Doub	2 digit n	umbers	$4 x$ and $8 x$		10x bigger
				$3 x$ table		$3 x, 6 x$ and 12	tables	Double larger numbers and decimals
	$8 \times$ table			6x table		3 x and 9 x t	bles	11x and 7x tables

Dothill March '23

Multiplication KS2

Year	5				6			
Developing Conceptual/ Procedural Understanding	Building tables For example, apply tables knowledge to multiples of 10, 100 and 1000 using counting stick- forwards and backwards and with missing jumps Using known facts If $2 \times 3=6$ then 2000×3 $=6000$ and $200 \times 30=6000$ Place value materials to represent calculations Short multiplication Use expanded method first if needed to build conceptual understanding $\begin{array}{r} 4346 \\ \times \quad 8 \\ \hline 34768 \\ \hline 234 \end{array}$	Grid method (if needed for conceptual understanding) 28×27 \square Addition to be done mentally or across followed by column addition $\begin{aligned} & \text { Long multiplication } \\ & \text { Expanded } \\ & 28 \\ & \times \quad 27 \\ & \hline 56(7 \times 8) \\ & 140(7 \times 20) \\ & 160(20 \times 8) \\ & 400(20 \times 20) \\ & \hline 756 \end{aligned}$	leading to compact $\begin{array}{r} 28 \\ \times \quad 27 \\ \hline 196 \\ 5 \\ 560 \\ \hline 15 \\ \hline 756 \end{array}$ Extend to HTU \times TU or ThHTU \times TU as appropriate Representing problems 40 cupcakes cost $£ 3.60$, how much do 20 cupcakes cost? How much do 80 cupcakes cost? How much do 10 cupcakes cost?		Building tables For example, apply tables knowledge to decimals using counting stick-forwards and backwards and with missing jumps Using known facts If $2 \times 3=6$ then $0.2 \times 3=0.6$ and $0.02 \times 3=0.06$ Long multiplication Use expanded method first if needed to build conceptual understanding $\begin{array}{r} 5172 \\ \times \quad 27 \\ \hline 36204 \\ 151 \\ 103440 \\ \hline 1 \\ \hline 139644 \\ \hline \end{array}$	If plac metho $0.75 \times$ 0.7×6 $0.05 \times$ $0.75 \times$ Make and m Repre Amy is 600 . writte menta	value for de 4.2 $=0.3$ $=4.5$ plicit ey 0.7 \qquad nting iven t says metho teps apples cost the	cure, use grid l multiplication between decimals 0.05 lems alculation 5413 x an do this without a Write down the hink Amy could do.
Known facts	Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers Recall prime numbers up to 19 Recognise and use square and cube numbers and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$)				Identify common factors, common multiples and prime numbers			
Essential knowledge	$4 x$ and $8 x$ tables			$\begin{gathered} 100,1000 \\ \text { times bigger } \end{gathered}$	Multiplication facts up to 12×12		Partition to multiply mentally	
	$3 x, 6 x$ and $12 x$ tables; $3 x$ and $9 x$ tables			$10,100,1000$ times smaller	Apply place value to derive multiplication facts, e.g. 3$x 4=12 \text { so } 3 \times 0.4=1.2$			larger numbers d decimals
	$11 x$ and 7x tables			Double larger numbers and decimals				

